
Linux Performance 
Analysis and Tools

Lead Performance Engineer

brendan@joyent.com

Brendan Gregg

@brendangregg
SCaLE11x
February, 2013

Sunday, February 24, 13

mailto:rod@joyent.com
mailto:rod@joyent.com


Find the Bottleneck

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

Expander Interconnect

I/O Bus

Interface 
Transports

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface
CPU
Inter-

connect

Memory
Bus

CPU
1

DRAM

Operating System Hardware

Li
nu

x 
Ke

rn
el

Sunday, February 24, 13



whoami

• Lead Performance Engineer

• Work/Research: tools, visualizations, methodologies

• Was Brendan@Sun Microsystems, Oracle, now Joyent

Sunday, February 24, 13



Joyent

• High-Performance Cloud Infrastructure

• Compete on cloud instance/OS performance

• Public/private cloud provider

• OS-Virtualization for bare metal performance (Zones)

• Core developers of SmartOS and node.js

• KVM for Linux guests

Sunday, February 24, 13



SCaLE10x: Cloud Performance Analysis

• Example perf issues, including new tools and visualizations:

http://dtrace.org/blogs/brendan/2012/01/30/performance-analysis-talk-at-scale10x/

Sunday, February 24, 13

http://dtrace.org/blogs/brendan/2012/01/30/performance-analysis-talk-at-scale10x/
http://dtrace.org/blogs/brendan/2012/01/30/performance-analysis-talk-at-scale10x/


SCaLE11x: Linux Performance Analysis

Systems
Performance

ENTERPRISE
AND THE CLOUD

Brendan Gregg

Prentice Hall, 2013

• The primary operating system for my next book:
(secondary is the OpenSolaris-illumos-based SmartOS)

Sunday, February 24, 13



Agenda

• Background

• Linux Analysis and Tools

• Basic

• Intermediate

• Advanced

• Methodologies

• Challenges

Sunday, February 24, 13



Performance

• Why do performance analysis?

• Reduce IT spend – find and eliminate waste, find areas to 
tune, and do more with less

• Build scalable architectures – understand system limits 
and develop around them

• Solve issues – locate bottlenecks and latency outliers

Sunday, February 24, 13



Systems Performance

• Why study the operating system?

• Find and fix kernel-based perf issues

• 2-20% wins: I/O or buffer size tuning, NUMA config, etc

• 2-200x wins: bugs, disabled features, perturbations causing 
latency outliers

• Kernels change, new devices are added, workloads scale, and 
new perf issues are encountered.

• Analyze application perf from kernel/system context

• 2-2000x wins: identifying and eliminating unnecessary work

Sunday, February 24, 13



• System analysis can be top-down, or bottom-up: 

Perspectives

Workload

Application

System Calls

System Libraries

Kernel

Devices

Workload
Analysis

Resource
Analysis

Operating
System
Software
Stack

Developers

Sysadmins

Sunday, February 24, 13



Kernel Internals

• Eventually you’ll need to know some kernel internals

Applications
DBs, all server types, ...

Block Device Int. Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

Li
nu

x 
Ke

rn
el

user-level

kernel-level

Operating System

Sunday, February 24, 13



Common System Metrics

• It’s also worth studying common system metrics (iostat, ...), 
even if you intend to use a monitoring product. Monitoring 
products often use the same metrics, read from /proc.

$ iostat
Linux 3.2.6-3.fc16.x86_64 (node104)  02/20/2013  _x86_64_ (1 CPU)

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           0.02    0.00    0.10    0.04    0.00   99.84

Device:            tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
vda               0.24         7.37         2.15   80735422   23571828
vdb               0.06         5.51         7.79   60333940   85320072

Sunday, February 24, 13



Analysis and Tools

Sunday, February 24, 13



Analysis and Tools

• A quick tour of tools, to show what can be done

• Then, some methodologies for applying them

Sunday, February 24, 13



Analysis and Tools

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

Operating System Hardware

Sunday, February 24, 13



Analysis and Tools

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

Operating System Hardware

p
e
r
f
 
d
t
r
a
c
e
 
s
t
a
p

perf

iostat
iotop

blktrace
dtrace

perf

top
pidstat
mpstat
dstat

slabtop
dstat
free
top

netstatstrace

tcpdump ip nicstat dtrace

perf

dstat
sar

/proc

Various:

vmstat

ping

Sunday, February 24, 13



Tools: Basic

• uptime

• top or htop

• mpstat

• iostat

• vmstat

• free

• ping

• nicstat

• dstat

Sunday, February 24, 13



uptime

• Shows load averages, which are also shown by other tools:

• This counts runnable threads (tasks), on-CPU, or, runnable 
and waiting. Linux includes tasks blocked on disk I/O.

• These are exponentially-damped moving averages, with time 
constants of 1, 5 and 15 minutes. With three values you can 
see if load is increasing, steady, or decreasing.

• If the load is greater than the CPU count, it might mean the 
CPUs are saturated (100% utilized), and threads are suffering 
scheduler latency. Might. There’s that disk I/O factor too.

• This is only useful as a clue. Use other tools to investigate!

$ uptime
 16:23:34 up 126 days,  1:03,  1 user,  load average: 5.09, 2.12, 1.82

Sunday, February 24, 13



• System-wide and per-process summaries:

• %CPU = interval sum for all CPUs (varies on other OSes)

• top can consume CPU (syscalls to read /proc)

• Straight-forward. Or is it?

top

$ top
top - 01:38:11 up 63 days,  1:17,  2 users,  load average: 1.57, 1.81, 1.77
Tasks: 256 total,   2 running, 254 sleeping,   0 stopped,   0 zombie
Cpu(s):  2.0%us,  3.6%sy,  0.0%ni, 94.2%id,  0.0%wa,  0.0%hi,  0.2%si,  0.0%st
Mem:  49548744k total, 16746572k used, 32802172k free,   182900k buffers
Swap: 100663292k total,        0k used, 100663292k free, 14925240k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
11721 web       20   0  623m  50m 4984 R   93  0.1   0:59.50 node
11715 web       20   0  619m  20m 4916 S   25  0.0   0:07.52 node
   10 root      20   0     0    0    0 S    1  0.0 248:52.56 ksoftirqd/2
   51 root      20   0     0    0    0 S    0  0.0   0:35.66 events/0
11724 admin     20   0 19412 1444  960 R    0  0.0   0:00.07 top
    1 root      20   0 23772 1948 1296 S    0  0.0   0:04.35 init
[...]

Sunday, February 24, 13



top, cont.

• Interview questions:

• 1. Does it show all CPU consumers?

• 2. A process has high %CPU – next steps for analysis?

Sunday, February 24, 13



top, cont.

• 1. top can miss:

• short-lived processes

• kernel threads (tasks), unless included (see top options)

• 2. analyzing high CPU processes:

• identify why – profile code path

• identify what – execution or stall cycles

• High %CPU time may be stall cycles on memory I/O – 
upgrading to faster CPUs doesn’t help!

Sunday, February 24, 13



htop

• Super top. Super configurable. Eg, basic CPU visualization:

Sunday, February 24, 13



mpstat

• Check for hot threads, unbalanced workloads:

• Columns are summarized system-wide in top(1)’s header

$ mpstat -P ALL 1
02:47:49   CPU    %usr  %nice   %sys %iowait   %irq  %soft %steal %guest  %idle
02:47:50   all   54.37   0.00  33.12    0.00   0.00   0.00   0.00   0.00  12.50
02:47:50     0   22.00   0.00  57.00    0.00   0.00   0.00   0.00   0.00  21.00
02:47:50     1   19.00   0.00  65.00    0.00   0.00   0.00   0.00   0.00  16.00
02:47:50     2   24.00   0.00  52.00    0.00   0.00   0.00   0.00   0.00  24.00
02:47:50     3  100.00   0.00   0.00    0.00   0.00   0.00   0.00   0.00   0.00
02:47:50     4  100.00   0.00   0.00    0.00   0.00   0.00   0.00   0.00   0.00
02:47:50     5  100.00   0.00   0.00    0.00   0.00   0.00   0.00   0.00   0.00
02:47:50     6  100.00   0.00   0.00    0.00   0.00   0.00   0.00   0.00   0.00
02:47:50     7   16.00   0.00  63.00    0.00   0.00   0.00   0.00   0.00  21.00
02:47:50     8  100.00   0.00   0.00    0.00   0.00   0.00   0.00   0.00   0.00
[...]

Sunday, February 24, 13



• Disk I/O statistics. 1st output is summary since boot.

iostat

$ iostat -xkdz 1

Linux 2.6.35-32-server (prod21)       02/20/13     _x86_64_    (16 CPU)

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s  \ ...
sda               0.00     0.00    0.00    0.00     0.00     0.00  / ...
sdb               0.00     0.35    0.00    0.05     0.10     1.58  \ ...
                                                                   / ...
Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s  \ ...
sdb               0.00     0.00  591.00    0.00  2364.00     0.00  / ...

... \   avgqu-sz   await r_await w_await  svctm  %util

... /       0.00    0.84    0.84    0.00   0.84   0.00

... \       0.00    3.82    3.47    3.86   0.30   0.00

... /       0.00    2.31    2.31    0.00   2.31   0.00

... \

... /   avgqu-sz   await r_await w_await  svctm  %util

... \       0.95    1.61    1.61    0.00   1.61  95.00

workload input

resulting performance

Sunday, February 24, 13



iostat, cont.

• %util: usefulness depends on target – virtual devices backed 
by multiple disks may accept more work a 100% utilization

• Also calculate I/O controller stats by summing their devices

• One nit: would like to see disk errors too. Add a “-e”?

Sunday, February 24, 13



vmstat

• Virtual-Memory statistics, and other high-level summaries:

• First line of output includes some summary-since-boot values

• “r” = total number of runnable threads, including those running

• Swapping (aka paging) allows over-subscription of main 
memory by swapping pages to disk, but costs performance

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
15  0   2852 46686812 279456 1401196   0   0    0     0    0    0  0  0 100  0
16  0   2852 46685192 279456 1401196   0   0    0     0 2136 36607 56 33 11  0
15  0   2852 46685952 279456 1401196   0   0    0    56 2150 36905 54 35 11  0
15  0   2852 46685960 279456 1401196   0   0    0     0 2173 36645 54 33 13  0
[...]

Sunday, February 24, 13



free

• Memory usage summary (Kbytes default):

• buffers: block device I/O cache

• cached: virtual page cache

$ free
             total       used       free     shared    buffers     cached
Mem:      49548744   32787912   16760832          0      61588     342696
-/+ buffers/cache:   32383628   17165116
Swap:    100663292          0  100663292

Sunday, February 24, 13



ping

• Simple network test (ICMP):

• Used to measure network latency. Actually kernel <-> kernel 
IP stack latency, including how the network handles ICMP.

• Tells us some, but not a lot (above is an exception).
Lots of other/better tools for this (eg, hping). Try using TCP.

$ ping www.hilton.com
PING a831.b.akamai.net (63.234.226.9): 56 data bytes
64 bytes from 63.234.226.9: icmp_seq=0 ttl=56 time=737.737 ms
Request timeout for icmp_seq 1
64 bytes from 63.234.226.9: icmp_seq=2 ttl=56 time=819.457 ms
64 bytes from 63.234.226.9: icmp_seq=3 ttl=56 time=897.835 ms
64 bytes from 63.234.226.9: icmp_seq=4 ttl=56 time=669.052 ms
64 bytes from 63.234.226.9: icmp_seq=5 ttl=56 time=799.932 ms
^C
--- a831.b.akamai.net ping statistics ---
6 packets transmitted, 5 packets received, 16.7% packet loss
round-trip min/avg/max/stddev = 669.052/784.803/897.835/77.226 ms

Sunday, February 24, 13

http://www.hilton.com
http://www.hilton.com


nicstat

• Network statistics tool, ver 1.92 on Linux:

• This was the tool I wanted, and finally wrote it out of frustration 
(Tim Cook ported and enhanced it on Linux)

• Calculate network controller stats by summing interfaces

# nicstat -z 1                                                          
    Time      Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat 
01:20:58     eth0    0.07    0.00    0.95    0.02   79.43   64.81  0.00   0.00 
01:20:58     eth4    0.28    0.01    0.20    0.10  1451.3   80.11  0.00   0.00 
01:20:58  vlan123    0.00    0.00    0.00    0.02   42.00   64.81  0.00   0.00 
01:20:58      br0    0.00    0.00    0.00    0.00   42.00   42.07  0.00   0.00 
    Time      Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat 
01:20:59     eth4 42376.0   974.5 28589.4 14002.1  1517.8   71.27  35.5   0.00 
    Time      Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat 
01:21:00     eth0    0.05    0.00    1.00    0.00   56.00    0.00  0.00   0.00 
01:21:00     eth4 41834.7   977.9 28221.5 14058.3  1517.9   71.23  35.1   0.00 
    Time      Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat 
01:21:01     eth4 42017.9   979.0 28345.0 14073.0  1517.9   71.24  35.2   0.00 
[...]

Sunday, February 24, 13



dstat

• A better vmstat-like tool. Does coloring (FWIW).

Sunday, February 24, 13



Tools: Basic, recap

• uptime

• top or htop

• mpstat

• iostat

• vmstat

• free

• ping

• nicstat

• dstat

Sunday, February 24, 13



Tools: Basic, recap

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

Operating System Hardware

iostat

top
mpstat
dstat

dstat
free
top

dstat

vmstat

ping

I/O Bridge nicstat

I/O Controller Network Controller

infer infer

Sunday, February 24, 13



Tools: Intermediate

• sar

• netstat

• pidstat

• strace

• tcpdump

• blktrace

• iotop

• slabtop

• sysctl

• /proc

Sunday, February 24, 13



sar

• System Activity Reporter. Eg, paging statistics -B:

• Configure to archive statistics from cron

• Many, many statistics available:

• -d: block device statistics, -q: run queue statistics, ...

• Same statistics as shown by other tools (vmstat, iostat, ...)

$ sar -B 1
Linux 3.2.6-3.fc16.x86_64 (node104)  02/20/2013  _x86_64_ (1 CPU)

05:24:34 PM  pgpgin/s pgpgout/s   fault/s  majflt/s  pgfree/s pgscank/s pgscand/s pgsteal/s  %vmeff
05:24:35 PM      0.00      0.00    267.68      0.00     29.29      0.00      0.00      0.00    0.00
05:24:36 PM     19.80      0.00    265.35      0.99     28.71      0.00      0.00      0.00    0.00
05:24:37 PM     12.12      0.00   1339.39      1.01   2763.64      0.00   1035.35   1035.35  100.00
05:24:38 PM      0.00      0.00    534.00      0.00     28.00      0.00      0.00      0.00    0.00
05:24:39 PM    220.00      0.00    644.00      3.00     74.00      0.00      0.00      0.00    0.00
05:24:40 PM   2206.06      0.00   6188.89     17.17   5222.22   2919.19      0.00   2919.19  100.00
[...]

Sunday, February 24, 13



netstat

• Various network protocol statistics using -s:
$ netstat -s
[...]
Tcp:
    127116 active connections openings
    165223 passive connection openings
    12904 failed connection attempts
    19873 connection resets received
    20 connections established
    662889209 segments received
    354923419 segments send out
    405146 segments retransmited
    6 bad segments received.
    26379 resets sent
[...]
TcpExt:
    2142 invalid SYN cookies received
    3350 resets received for embryonic SYN_RECV sockets
    7460 packets pruned from receive queue because of socket buffer overrun
    2932 ICMP packets dropped because they were out-of-window
    96670 TCP sockets finished time wait in fast timer
    86 time wait sockets recycled by time stamp
    1007 packets rejects in established connections because of timestamp
[...many...]

Sunday, February 24, 13



pidstat

• Very useful process breakdowns:
# pidstat 1
Linux 3.2.6-3.fc16.x86_64 (node107)  02/20/2013  _x86_64_ (1 CPU)

05:55:18 PM       PID    %usr %system  %guest    %CPU   CPU  Command
05:55:19 PM     12642    0.00    1.01    0.00    1.01     0  pidstat
05:55:19 PM     12643    5.05   11.11    0.00   16.16     0  cksum

05:55:19 PM       PID    %usr %system  %guest    %CPU   CPU  Command
05:55:20 PM     12643    6.93    6.93    0.00   13.86     0  cksum
[...]

# pidstat -d 1
Linux 3.2.6-3.fc16.x86_64 (node107)  02/20/2013  _x86_64_ (1 CPU)

05:55:22 PM       PID   kB_rd/s   kB_wr/s kB_ccwr/s  Command
05:55:23 PM       279      0.00     61.90      0.00  jbd2/vda2-8
05:55:23 PM     12643 151985.71      0.00      0.00  cksum

05:55:23 PM       PID   kB_rd/s   kB_wr/s kB_ccwr/s  Command
05:55:24 PM     12643  96616.67      0.00      0.00  cksum
[...]

disk I/O (yay!)

Sunday, February 24, 13



strace

• System call tracer:

• -ttt: microsecond timestamp since epoch (left column)

• -T: time spent in syscall (<seconds>)

• -p: PID to trace (or provide a command)

• Useful – high application latency often caused by resource I/O, 
and most resource I/O is performed by syscalls

$ strace -tttT -p 12670
1361424797.229550 read(3, "REQUEST 1888 CID 2"..., 65536) = 959 <0.009214>
1361424797.239053 read(3, "", 61440)    = 0 <0.000017>
1361424797.239406 close(3)              = 0 <0.000016>
1361424797.239738 munmap(0x7f8b22684000, 4096) = 0 <0.000023>
1361424797.240145 fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0 
<0.000017>
[...]

Sunday, February 24, 13



strace, cont.

• -c: print summary:

• This is also a (worst case) demo of the strace overhead:
# time dd if=/dev/zero of=/dev/null bs=512 count=1024k
[...]
536870912 bytes (537 MB) copied, 0.35226 s, 1.5 GB/s
real 0m0.355s
user 0m0.021s
sys 0m0.022s
# time strace -c dd if=/dev/zero of=/dev/null bs=512 count=1024k
[...]
536870912 bytes (537 MB) copied, 71.9565 s, 7.5 MB/s
real 1m11.969s
user 0m3.179s
sys 1m6.346s

200x slower

# strace -c dd if=/dev/zero of=/dev/null bs=512 count=1024k
[...]
% time     seconds  usecs/call     calls    errors syscall
------ ----------- ----------- --------- --------- ----------------
 51.32    0.028376           0   1048581           read
 48.68    0.026911           0   1048579           write
  0.00    0.000000           0         7           open
[...]

Sunday, February 24, 13



tcpdump

• Sniff network packets, dump to output files for post analysis:

• Output has timestamps with microsecond resolution

• Study odd network latency packet-by-packet

• Import file into other tools (wireshark)

# tcpdump -i eth4 -w /tmp/out.tcpdump
tcpdump: listening on eth4, link-type EN10MB (Ethernet), capture size 65535 
bytes
^C33651 packets captured
34160 packets received by filter
508 packets dropped by kernel

# tcpdump -nr /tmp/out.tcpdump
reading from file /tmp/out.tcpdump, link-type EN10MB (Ethernet)
06:24:43.908732 IP 10.2.0.2.55502 > 10.2.203.2.22: Flags [.], ack ...
06:24:43.908922 IP 10.2.0.2.55502 > 10.2.203.2.22: Flags [.], ack ...
06:24:43.908943 IP 10.2.203.2.22 > 10.2.0.2.55502: Flags [.], seq ...
06:24:43.909061 IP 10.2.0.2.55502 > 10.2.203.2.22: Flags [.], ack ...

Sunday, February 24, 13



tcpdump, cont.

• Does have overhead in terms of CPU and storage; previous 
example dropped packets

• Should be using socket ring buffers to reduce overhead

• Can use filter expressions to also reduce overhead

• Could still be problematic for busy interfaces

Sunday, February 24, 13



blktrace

• Block device I/O event tracing. Launch using btrace, eg:

• Above output shows a single disk I/O event. Action time is 
highlighted (seconds).

• Use for investigating I/O latency outliers

# btrace /dev/sdb                                                      
  8,16   3    1     0.429604145 20442  A   R 184773879 + 8 <- (8,17) 184773816
  8,16   3    2     0.429604569 20442  Q   R 184773879 + 8 [cksum]         
  8,16   3    3     0.429606014 20442  G   R 184773879 + 8 [cksum]         
  8,16   3    4     0.429607624 20442  P   N [cksum]                       
  8,16   3    5     0.429608804 20442  I   R 184773879 + 8 [cksum]         
  8,16   3    6     0.429610501 20442  U   N [cksum] 1                     
  8,16   3    7     0.429611912 20442  D   R 184773879 + 8 [cksum]         
  8,16   1    1     0.440227144     0  C   R 184773879 + 8 [0]             
[...]                                                 

Sunday, February 24, 13



iotop

• Disk I/O by process:

• IO: time thread was waiting on I/O (this is even more useful 
than pidstat’s Kbytes)

• Needs CONFIG_TASK_IO_ACCOUNTING or something 
similar enabled to work.

# iotop -bod5
Total DISK READ:      35.38 M/s | Total DISK WRITE:      39.50 K/s
  TID  PRIO  USER     DISK READ  DISK WRITE  SWAPIN      IO    COMMAND
12824 be/4 root       35.35 M/s    0.00 B/s  0.00 % 80.59 % cksum ...
  279 be/3 root        0.00 B/s   27.65 K/s  0.00 %  2.21 % [jbd2/vda2-8]
12716 be/4 root       28.44 K/s    0.00 B/s  2.35 %  0.00 % sshd: root@pts/0
12816 be/4 root        6.32 K/s    0.00 B/s  0.89 %  0.00 % python /usr/bin/
iotop -bod5
[...]

Sunday, February 24, 13



slabtop

• Kernel slab allocator usage top:

• Shows where kernel memory is consumed

# slabtop -sc
Active / Total Objects (% used)    : 900356 / 1072416 (84.0%)
 Active / Total Slabs (% used)      : 29085 / 29085 (100.0%)
 Active / Total Caches (% used)     : 68 / 91 (74.7%)
 Active / Total Size (% used)       : 237067.98K / 260697.24K (90.9%)
 Minimum / Average / Maximum Object : 0.01K / 0.24K / 10.09K

  OBJS ACTIVE  USE OBJ SIZE  SLABS OBJ/SLAB CACHE SIZE NAME                   
112035 110974  99%    0.91K   3201       35    102432K ext4_inode_cache
726660 579946  79%    0.11K  20185       36     80740K buffer_head
  4608   4463  96%    4.00K    576        8     18432K kmalloc-4096
 83496  76878  92%    0.19K   1988       42     15904K dentry
 23809  23693  99%    0.55K    821       29     13136K radix_tree_node
 11016   9559  86%    0.62K    216       51      6912K proc_inode_cache
  3488   2702  77%    1.00K    109       32      3488K kmalloc-1024
   510    431  84%    5.73K    102        5      3264K task_struct
 10948   9054  82%    0.17K    238       46      1904K vm_area_struct
  2585   1930  74%    0.58K     47       55      1504K inode_cache
[...]

Sunday, February 24, 13



sysctl

• System settings:

• Static performance tuning: check the config of the sysetm

# sysctl -a
[...]
net.ipv4.tcp_fack = 1
net.ipv4.tcp_reordering = 3
net.ipv4.tcp_ecn = 2
net.ipv4.tcp_dsack = 1
net.ipv4.tcp_mem = 24180 32240 48360
net.ipv4.tcp_wmem = 4096 16384 1031680
net.ipv4.tcp_rmem = 4096 87380 1031680
[...]

Sunday, February 24, 13



/proc

• Read statistic sources directly:

• Also see /proc/vmstat

$ cat /proc/meminfo
MemTotal:        8181740 kB
MemFree:           71632 kB
Buffers:          163288 kB
Cached:          4518600 kB
SwapCached:         7036 kB
Active:          4765476 kB
Inactive:        2866016 kB
Active(anon):    2480336 kB
Inactive(anon):   478580 kB
Active(file):    2285140 kB
Inactive(file):  2387436 kB
Unevictable:           0 kB
Mlocked:               0 kB
SwapTotal:       2932728 kB
SwapFree:        2799568 kB
Dirty:                76 kB
Writeback:             0 kB
[...]

Sunday, February 24, 13



Tools: Intermediate, recap.

• sar

• netstat

• pidstat

• strace

• tcpdump

• blktrace

• iotop

• slabtop

• sysctl

• /proc

Sunday, February 24, 13



Tools: Advanced

• perf

• DTrace

• SystemTap

• and more ...

Sunday, February 24, 13



perf

• Originally Performance Counters for Linux (PCL), focusing on 
CPU performance counters (programmable registers)

• Now a collection of profiling and tracing tools, with numerous 
subcommands, including:

kmem Trace/measure kernel memory (slab) properties
kvm Trace/measure KVM guest OS
list List available events (targets of instrumentation)
lock Analyze lock events
probe Create dynamic probe points (dynamic tracing!)
record Run a command and record profile data (as perf.data)
report Read perf.data and summarize, has an interactive mode
sched Trace/measure kernel scheduler statistics
stat Run a command, gather, and report perf counter stats

Sunday, February 24, 13



• Key performance counter summary:

• Low IPC (<0.2) means stall cycles (likely memory); look for 
ways to reduce memory I/O, and improve locality (NUMA)

perf: Performance Counters

$ perf stat gzip file1

 Performance counter stats for 'gzip file1':

        2294.924314  task-clock-msecs         #      0.901 CPUs 
                 62  context-switches         #      0.000 M/sec
                  0  CPU-migrations           #      0.000 M/sec
                265  page-faults              #      0.000 M/sec
         5496871381  cycles                   #   2395.230 M/sec
        12210601948  instructions             #      2.221 IPC  
         1263678628  branches                 #    550.641 M/sec
           13037608  branch-misses            #      1.032 %    
            4725467  cache-references         #      2.059 M/sec
            2779597  cache-misses             #      1.211 M/sec

        2.546444859  seconds time elapsed

yay

Sunday, February 24, 13



• Can choose different counters:

• Supports additional custom counters (in hex or a desc) for 
whatever the processor supports. Examine bus events.

perf: Performance Counters, cont.

$ perf list | grep Hardware
  cpu-cycles OR cycles                               [Hardware event]
  stalled-cycles-frontend OR idle-cycles-frontend    [Hardware event]
  stalled-cycles-backend OR idle-cycles-backend      [Hardware event]
  instructions                                       [Hardware event]
  cache-references                                   [Hardware event]
[...]
$ perf stat -e instructions,cycles,L1-dcache-load-misses,LLC-load-
misses,dTLB-load-misses gzip file1

 Performance counter stats for 'gzip file1':

        12278136571  instructions             #      2.199 IPC  
         5582247352  cycles                  
           90367344  L1-dcache-load-misses   
            1227085  LLC-load-misses         
             685149  dTLB-load-misses        

        2.332492555  seconds time elapsed

Sunday, February 24, 13



perf: Performance Counters, cont.

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

Operating System Hardware

perf stat

Expander Interconnect

I/O Bus

CPU
Inter-

connect

Memory
Bus

advanced activity:
refer to the
processor
manuals

Sunday, February 24, 13



• Profiling (sampling) CPU activity:

• -a: all CPUs

• -g: call stacks

• -F: Hertz

• sleep 10: duration to sample (dummy command)

• Generates a perf.data file

• Can profile other hardware events too, with call stacks

perf: Profiling

# perf record -a -g -F 997 sleep 10
[ perf record: Woken up 44 times to write data ]

Sunday, February 24, 13



perf: Profiling, cont.

• Reading perf.data, forcing non-interactive mode (--stdio):
# perf report --stdio
[...]
# Overhead      Command      Shared Object                          Symbol
# ........  ...........  .................  ..............................
#
    72.98%      swapper  [kernel.kallsyms]  [k] native_safe_halt
                |
                --- native_safe_halt
                    default_idle
                    cpu_idle
                    rest_init
                    start_kernel
                    x86_64_start_reservations
                    x86_64_start_kernel

     9.43%           dd  [kernel.kallsyms]  [k] acpi_pm_read
                     |
                     --- acpi_pm_read
                         ktime_get_ts
                        |
                        |--87.75%-- __delayacct_blkio_start
                        |          io_schedule_timeout
                        |          balance_dirty_pages_ratelimited_nr
                        |          generic_file_buffered_write
[...]

Sunday, February 24, 13



perf: Profiling, cont.

• Flame Graphs support perf profiling data:

• Interactive SVG. Navigate to quantify and compare code paths

Sunday, February 24, 13



• Listing static tracepoints for block I/O:

• Many useful probes already provided for kernel tracing:

perf: Static Tracing

$ perf list | grep block:
  block:block_rq_abort                               [Tracepoint event]
  block:block_rq_requeue                             [Tracepoint event]
  block:block_rq_complete                            [Tracepoint event]
  block:block_rq_insert                              [Tracepoint event]
  block:block_rq_issue                               [Tracepoint event]
  block:block_bio_bounce                             [Tracepoint event]
  block:block_bio_complete                           [Tracepoint event]
  block:block_bio_backmerge                          [Tracepoint event]
  block:block_bio_frontmerge                         [Tracepoint event]
  block:block_bio_queue                              [Tracepoint event]
  block:block_getrq                                  [Tracepoint event]
  block:block_sleeprq                                [Tracepoint event]
  block:block_plug                                   [Tracepoint event]
  block:block_unplug                                 [Tracepoint event]
  block:block_split                                  [Tracepoint event]
  block:block_bio_remap                              [Tracepoint event]
  block:block_rq_remap                               [Tracepoint event]

$ perf list | grep Tracepoint | wc -l
    840

Sunday, February 24, 13



perf: Static Tracepoints

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

CPU
1

DRAM

Operating System Hardware

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

sock:
net:
skb:

scsi:
irq:

block:

ext4:
vmscan:
kmem:

sched:
syscalls:

... more can be added as needed

device
stats
can be
inferred

Sunday, February 24, 13



• Define custom probes from kernel code; eg, tcp_sendmsg():

perf: Dynamic Tracing

# perf probe --add='tcp_sendmsg'
Add new event:
  probe:tcp_sendmsg    (on tcp_sendmsg)
[...]

# perf record -e probe:tcp_sendmsg -aR -g sleep 5 
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.091 MB perf.data (~3972 samples) ]

# perf report --stdio
[...]
# Overhead  Command      Shared Object       Symbol
# ........  .......  .................  ...........
#
   100.00%     sshd  [kernel.kallsyms]  [k] tcp_sendmsg
               |
               --- tcp_sendmsg
                   sock_aio_write
                   do_sync_write
                   vfs_write
                   sys_write
                   system_call
                   __GI___libc_write

active traced call stacks from
arbitrary kernel locations!

Sunday, February 24, 13



perf: Dynamic Tracing, cont.

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

Operating System Hardware

p
e
r
f
 
p
r
o
b
e
 
-
-
a
d
d

advanced activity:
refer to the
kernel source
code

device
stats
can be
inferred

Sunday, February 24, 13



perf: Dynamic Tracing, cont.

• Fills in kernel observability gaps

• Awesome capability

• Takes some effort to use (waiting for the trace-dump-
analyze cycle, and using post-processors to rework the 
output, or the post-scripting capability)

• Would be the awesomest tool ever, if it wasn’t for ...

Sunday, February 24, 13



DTrace

Sunday, February 24, 13



DTrace

• Programmable, real-time, dynamic and static tracing

• Perf analysis and troubleshooting, without restarting anything

• Used on Solaris, illumos/SmartOS, Mac OS X, FreeBSD, ...

• Two ports in development for Linux (that we know of):

• 1. dtrace4linux

• Mostly by Paul Fox

• 2. Oracle Enterprise Linux DTrace

• Steady progress

There are a couple of awesome books about DTrace too

Sunday, February 24, 13



DTrace: Installation

• dtrace4linux version:

• WARNING: still a prototype, can panic/freeze kernels.
I’m using it the lab to solve replicated production perf issues

1. https://github.com/dtrace4linux/dtrace
2. README:

tools/get-deps.pl   # if using Ubuntu
tools/get-deps-fedora.sh # RedHat/Fedora
make all
make install
make load           (need to be root or have sudo access)

# make load
tools/load.pl
13:40:14 Syncing...
13:40:14 Loading: build-3.2.6-3.fc16.x86_64/driver/dtracedrv.ko
13:40:15 Preparing symbols...
13:40:15 Probes available: 281887
13:40:18 Time: 4s

Sunday, February 24, 13

https://github.com/dtrace4linux/dtrace
https://github.com/dtrace4linux/dtrace


DTrace: Programming

• Programming capabilities allow for powerful, efficient, one-
liners and scripts. In-kernel custom filtering and aggregation.

• Example shows tcp_sendmsg() size dist for “sshd” PIDs

# dtrace -n 'fbt::tcp_sendmsg:entry /execname == "sshd"/ {
    @["bytes"] = quantize(arg3); }'
dtrace: description 'fbt::tcp_sendmsg:entry ' matched 1 probe
^C

  bytes                                             
           value  ------------- Distribution ------------- count    
              16 |                                         0        
              32 |@@@@@@@@@@@@@@@@                         1869     
              64 |@@@@@@@@@@@@@                            1490     
             128 |@@@                                      355      
             256 |@@@@                                     461      
             512 |@@@                                      373      
            1024 |@                                        95       
            2048 |                                         4        
            4096 |                                         1        
            8192 |                                         0   

Sunday, February 24, 13



DTrace: Programming

• Programming capabilities allow for powerful, efficient, one-
liners and scripts. In-kernel custom filtering and aggregation.

• Example shows tcp_sendmsg() size dist for “sshd” PIDs

# dtrace -n 'fbt::tcp_sendmsg:entry /execname == "sshd"/ {
    @["bytes"] = quantize(arg3); }'
dtrace: description 'fbt::tcp_sendmsg:entry ' matched 1 probe
^C

  bytes                                             
           value  ------------- Distribution ------------- count    
              16 |                                         0        
              32 |@@@@@@@@@@@@@@@@                         1869     
              64 |@@@@@@@@@@@@@                            1490     
             128 |@@@                                      355      
             256 |@@@@                                     461      
             512 |@@@                                      373      
            1024 |@                                        95       
            2048 |                                         4        
            4096 |                                         1        
            8192 |                                         0   

these examples use dtrace4linux

filter

aggregation (summarizes)

kernel -> user transfers
these these numbers
only (pre-summarized)

Sunday, February 24, 13



DTrace: Real-Time

• Multiple GUIs use DTrace for real-time statistics. Eg, Joyent 
Cloud Analytics, showing real-time cloud-wide syscall latency:

Sunday, February 24, 13



DTrace, cont.

• Has advanced capabilities, but not necessarily difficult;
You may just:

• use one-liners (google “DTrace one-liners”)

• use scripts (DTraceToolkit; DTrace book; google)

• tweak one-liners or scripts a little

• ask someone else to write the scripts you need

• Ideally, you learn DTrace and write your own

Sunday, February 24, 13



DTrace: Scripts

#!/usr/sbin/dtrace -s

fbt::vfs_read:entry
{
 self->start = timestamp;
}

fbt::vfs_read:return
/self->start/
{
 @[execname, "ns"] = quantize(timestamp - self->start);
 self->start = 0;
}

# ./vfsread.d 
dtrace: script './vfsread.d' matched 2 probes
  cksum                                               ns                                                
           value  ------------- Distribution ------------- count
[...]
          262144 |                                         0     
          524288 |@@@@@@@@@@                               834      
         1048576 |                                         8        
         2097152 |                                         30       
         4194304 |                                         40       
         8388608 |@                                        66       
        16777216 |                                         28       
        33554432 |                                         1        

13 line script to time
VFS reads by process name

read latency distribution,
0.5ms -> 33ms (disks)

Sunday, February 24, 13



DTrace: Basics

• CLI syntax:

• provider – library of related probes

• module:function – shows where probe is located (for debug)

• name – name of probe

• Online reference and tutorial: http://dtrace.org/guide

probe description optional
filter

do this when
probe “fires”

dtrace -n ‘provider:module:function:name /predicate/ { action }’

Sunday, February 24, 13

http://dtrace.org/guide/preface.html
http://dtrace.org/guide/preface.html


DTrace: Providers

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

Sunday, February 24, 13



DTrace: Providers

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

f
b
t

p
i
d

syscall

sched
proc

vminfo
io

p
r
o
f
i
l
e

tcp udp ip

cpc

infer

ip
fbtinfer

cpc

profile

java javascript
node perl python
php ruby erlang
objc tcl ...
mysql postgres ...

fbt and pid
are dynamic

plockstat

Sunday, February 24, 13



DTrace: Linux Examples

• Following examples use fbt – kernel dynamic tracing

Sunday, February 24, 13



DTrace: ext4slower.d

• Show me:

• ext4 reads and writes

• slower than a specified latency (milliseconds)

• with time, process, direction, size, latency, and file name

• I wrote this to answer: is ext4 to blame for latency outliers?

• Argument is latency you are looking for: here, 10+ ms

# ./ext4slower.d 10
Tracing ext4 read/write slower than 10 ms
TIME                 PROCESS          D   KB     ms FILE
2013 Feb 22 17:17:02 cksum            R   64     35 100m
2013 Feb 22 17:17:02 cksum            R   64     16 1m
2013 Feb 22 17:17:03 cksum            R   64     18 data1
2013 Feb 22 17:17:03 cksum            R   64     23 data1

Sunday, February 24, 13



DTrace: ext4slower.d, cont.

• Extending vfs_read() example:

• ... continued:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option defaultargs
#pragma D option switchrate=5

dtrace:::BEGIN
{
 min_ns = $1 * 1000000;
 printf("Tracing ext4 read/write slower than %d ms\n", $1);
 printf("%-20s %-16s %1s %4s %6s %s\n", "TIME", "PROCESS",
     "D", "KB", "ms", "FILE");
}

fbt::vfs_read:entry, fbt::vfs_write:entry
{
 this->file = (struct file *)arg0;
 this->fs = this->file->f_path.dentry->d_inode->i_sb->s_type->name;
}

Sunday, February 24, 13



• Immediately exonerate or blame ext4.

DTrace: ext4slower.d, cont.

fbt::vfs_read:entry, fbt::vfs_write:entry
/stringof(this->fs) == "ext4"/
{
 self->start = timestamp;
 self->name = this->file->f_path.dentry->d_name.name;
}

fbt::vfs_read:return, fbt::vfs_write:return
/self->start && (this->delta = timestamp - self->start) > min_ns/
{
 this->dir = probefunc == "vfs_read" ? "R" : "W";
 printf("%-20Y %-16s %1s %4d %6d %s\n", walltimestamp,
     execname, this->dir, arg1 / 1024, this->delta / 1000000,
     stringof(self->name));
}

fbt::vfs_read:return, fbt::vfs_write:return
{
 self->start = 0;
 self->name = 0;
}

... should add more vfs_*() calls; or trace ext4 funcs directly

Sunday, February 24, 13



DTrace: tcpretransmit.d

• Show me:

• TCP retransmits

• destination IP address

• kernel stack (shows why)

• in real-time

• Don’t sniff all packets – only trace retransmits, to minimize 
overhead

Sunday, February 24, 13



DTrace: tcpretransmit.d, cont.

# ./tcpretransmit.d 
Tracing TCP retransmits... Ctrl-C to end.
2013 Feb 23 18:24:11: retransmit to 10.2.124.2, by:
              kernel`tcp_retransmit_timer+0x1bd
              kernel`tcp_write_timer+0x188
              kernel`run_timer_softirq+0x12b
              kernel`tcp_write_timer
              kernel`__do_softirq+0xb8
              kernel`read_tsc+0x9
              kernel`sched_clock+0x9
              kernel`sched_clock_local+0x25
              kernel`call_softirq+0x1c
              kernel`do_softirq+0x65
              kernel`irq_exit+0x9e
              kernel`smp_apic_timer_interrupt+0x6e
              kernel`apic_timer_interrupt+0x6e
[...]

... can trace those stack functions directly for more detail

Sunday, February 24, 13



• Source:

DTrace: tcpretransmit.d, cont.

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN { trace("Tracing TCP retransmits... Ctrl-C to end.\n"); }

fbt::tcp_retransmit_skb:entry {
 this->so = (struct sock *)arg0;
 this->d = (unsigned char *)&this->so->__sk_common.skc_daddr;
 printf("%Y: retransmit to %d.%d.%d.%d, by:", walltimestamp,
     this->d[0], this->d[1], this->d[2], this->d[3]);
 stack(99);
}

Sunday, February 24, 13



DTrace: Current State

• This was demoed on a prototype DTrace for Linux

• Right now (Feb 2013) not stable – will panic/freeze

• Needs other handholding to work around nits/bugs

• AFAIK, both DTrace ports welcome help (that means you!)

• Those examples were also fbt-based:

• Will probably need tweaks to match different kernels, since 
the API is dynamically built from the kernel code

• DTrace stable providers solve that problem – but many 
aren’t there on Linux yet

Sunday, February 24, 13



DTrace: Trying it out

• All providers are available to try on illumos/SmartOS

• illumos is the on-going fork of the OpenSolaris kernel

• SmartOS is Joyent’s illumos-based cloud OS (distro)

• Rough translation guide:

• DTrace implementation mature

• Joyent uses SmartOS as a hypervisor for running KVM Linux 
on ZFS

kernel: linux == illumos
distros: {ubuntu|CentOS|Fedora} == {SmartOS|OmniOS|OpenIndiana}

Sunday, February 24, 13



DTrace: Other Capabilities

• Trace short lived processes
• Profile CPU usage
• Time any thread blocking event
• Investigate disk I/O latency
• Investigate network I/O latency

• Examine cache activity
• Investigate memory allocation: growth or leaks
• Investigate swapping (paging) in detail
• Follow network packets through the stack
• Examine lock contention

• ...
Sunday, February 24, 13



SystemTap

Sunday, February 24, 13



SystemTap

• Created when there
wasn’t DTrace for
Linux ports

• Static and dynamic
tracing, probes,
tapsets, scripts, ...

• I’ve used it a lot:

• panics/freezes

• slow startups

• for Linux only

• incompatible with D

Sunday, February 24, 13



Tools: Advanced, recap.

Applications
DBs, all server types, ...

Block Device Interface Ethernet
LVM IP

ext3/... TCP/UDP
VFS Sockets

ZFS

Disk Disk Port Port

I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

CPU
1

DRAM

Operating System Hardware

Given the tools to
see everything,
how do you
use them? 

Sunday, February 24, 13



And More ...

• Other observability tools at all levels include:

• ps, pmap, traceroute, ntop, ss, lsof, oprofile, gprof, 
kcachegrind, valgrind, google profiler, nfsiostat, cifsiostat, 
latencytop, powertop, LLTng, ktap, ...

• And many experimental tools: micro-benchmarks

• So many tools it gets confusing – where do you start?

Sunday, February 24, 13



Methodologies

• Selected four:

• Streetlight Anti-Method

• Workload Characterization Method

• Drill-Down Analysis Method

• USE Method

• Methodologies give beginners a starting point, casual users a 
checklist, and experts a reminder

Sunday, February 24, 13



Streetlight Anti-Method

Sunday, February 24, 13



Streetlight Anti-Method

• 1. Pick observability tools that are

• familiar

• found on the Internet

• found at random

• 2. Run tools

• 3. Look for obvious issues

• Included for comparison (don’t use this methodology)

Sunday, February 24, 13



Streetlight Anti-Method, cont.

• Named after an observational bias called the streetlight effect

A policeman sees a drunk looking under a streetlight,
and asks what he is looking for.
The drunk says he has lost his keys.
The policeman can't find them either,
and asks if he lost them under the streetlight.
The drunk replies:
“No, but this is where the light is best.”

Sunday, February 24, 13



Streetlight Anti-Method, cont.

• Why are you still running top?

top - 15:09:38 up 255 days, 16:54, 10 users,  load average: 0.00, 0.03, 0.00
Tasks: 274 total,   1 running, 273 sleeping,   0 stopped,   0 zombie
Cpu(s):  0.7%us,  0.0%sy,  0.0%ni, 99.1%id,  0.1%wa,  0.0%hi, 0.0%si, 0.0%st
Mem:   8181740k total,  7654228k used,   527512k free,   405616k buffers
Swap:  2932728k total,   125064k used,  2807664k free,  3826244k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND                                                                                                                                   
16876 root      20   0 57596  17m 1972 S    4  0.2   3:00.60 python                                                                                                                                     
 3947 brendan   20   0 19352 1552 1060 R    0  0.0   0:00.06 top                                                                                                                                        
15841 joshw     20   0 67144  23m  908 S    0  0.3 218:21.70 mosh-server                                                                                                                                
16922 joshw     20   0 54924  11m  920 S    0  0.1 121:34.20 mosh-server                                                                                                                                
    1 root      20   0 23788 1432  736 S    0  0.0   0:18.15 init                                                                                                                                       
    2 root      20   0     0    0    0 S    0  0.0   0:00.61 kthreadd                                                                                                                                   
    3 root      RT   0     0    0    0 S    0  0.0   0:00.11 migration/0                                                                                                                                
    4 root      20   0     0    0    0 S    0  0.0  18:43.09 ksoftirqd/0                                                                                                                                
    5 root      RT   0     0    0    0 S    0  0.0   0:00.00 watchdog/0                                                                                                                                 
[...] 

Sunday, February 24, 13



Streetlight Anti-Method, cont.

• Tools-based approach

• Inefficient:

• can take time before the right tool is found

• can be wasteful when investigating false positives

• Incomplete:

• don’t find the right tool, or,

• the right tool doesn’t exist

Sunday, February 24, 13



Workload Characterization Method

Sunday, February 24, 13



Workload Characterization Method

• 1. Who

• 2. Why

• 3. What

• 4. How

Sunday, February 24, 13



Workload Characterization Method

• 1. Who is causing the load? PID, UID, IP addr, ...

• 2. Why is the load called? code path

• 3. What is the load? IOPS, tput, direction, type

• 4. How is the load changing over time?

Sunday, February 24, 13



Workload Characterization Method, cont.

• Identifies issues of load

• Best performance wins are from eliminating unnecessary work

• Don’t assume you know what the workload is – characterize

• Many of the previous analysis tools included workload statistics

Sunday, February 24, 13



Workload Characterization Method, cont.

• Pros:

• Potentially largest wins

• Cons:

• Only solves a class of issues – load

• Time consuming, and can be discouraging – most 
attributes examined will not be a problem

Sunday, February 24, 13



Drill-Down Analysis Method

Sunday, February 24, 13



Drill-Down Analysis Method

• 1. Start at highest level

• 2. Examine next-level details

• 3. Pick most interesting breakdown

• 4. If problem unsolved, go to 2

Sunday, February 24, 13



Drill-Down Analysis Method, cont.: Example

• For example, ext4 – identify latency origin top-down:

Drill-Down Analysis
Applications

Block Device Interface
ext4
VFS

Device Drivers

System Call Interface
System LibrariesUser

Kernel

Dynamic Tracing / DTrace is well suited for this,
as it can dig through all layers with custom detail

Sunday, February 24, 13



Drill-Down Analysis: ext4

• eg, ext4_readpages() latency distribution (microseconds):
# dtrace -n 'fbt::ext4_readpages:entry { self->ts = timestamp; }
    fbt::ext4_readpages:return /self->ts/ {
    @["us"] = lquantize((timestamp - self->ts) / 1000, 0, 10000, 250);
    self->ts = 0;
}'
dtrace: description 'fbt::ext4_readpages:entry ' matched 2 probes
^C

  us                                                
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@@@@@@@@                             303      
             250 |                                         0        
             500 |                                         0        
             750 |@@@@                                     88       
            1000 |@@@@@@@@@@@@@@                           335      
            1250 |                                         0        
            1500 |                                         0        
            1750 |@@@@                                     107      
            2000 |@@@@@@                                   144      
            2250 |                                         0        
            2500 |                                         0
[...]   

cache hits

disk I/O

Sunday, February 24, 13



Drill-Down Analysis: ext4

• ... can dig out more details as needed: file name, code path:
# dtrace -n 'fbt::ext4_readpages:entry {
    this->file = (struct file *)arg0;
    this->name = this->file->f_path.dentry->d_name.name;
    @[stringof(this->name), stack()] = count();
}'
dtrace: description 'fbt::ext4_readpages:entry ' matched 1 probe
^C[...]
  foo8                
              kernel`__do_page_cache_readahead+0x1c7
              kernel`ra_submit+0x21
              kernel`ondemand_readahead+0x115
              kernel`page_cache_async_readahead+0x80
              kernel`radix_tree_lookup_slot+0xe
              kernel`find_get_page+0x1e
              kernel`generic_file_aio_read+0x48b
              kernel`vma_merge+0x121
              kernel`do_sync_read+0xd2
              kernel`__switch_to+0x132
              kernel`security_file_permission+0x93
              kernel`rw_verify_area+0x61
              kernel`vfs_read+0xb0
              kernel`sys_read+0x4a
              kernel`system_call_fastpath+0x16
              122

# of
occurrences

Sunday, February 24, 13



Drill-Down Analysis Method, cont.

• Moves from higher- to lower-level details based on findings: 
environment-wide down to metal

• Pros:

• Will identify root cause(s)

• Cons:

• Time consuming – especially when drilling in the wrong 
direction

Sunday, February 24, 13



USE Method

Sunday, February 24, 13



USE Method

• For every resource, check:

• 1. Utilization

• 2. Saturation

• 3. Errors

Sunday, February 24, 13



USE Method, cont.

• For every resource, check:

• 1. Utilization: time resource was busy, or degree used

• 2. Saturation: degree of queued extra work

• 3. Errors: any errors

Saturation

Utilization

Errors

X

Sunday, February 24, 13



USE Method, cont.

• Hardware Resources:

• CPUs

• Main Memory

• Network Interfaces

• Storage Devices

• Controllers

• Interconnects

• Find the functional diagram and examine every item in the 
data path...

Sunday, February 24, 13



USE Method, cont.: Functional Diagram

For each check:

Disk Disk Port Port

Expander Interconnect

I/O Bus

Interface 
Transports

I/O Controller Network Controller

I/O Bridge

CPU
Interconnect CPU

1 DRAM

Hardware

Memory
Bus CPU

1DRAM

Memory
Bus

1. Utilization
2. Saturation
3. Errors

Sunday, February 24, 13



USE Method, cont.: Example Linux Checklist

Resource Type Metric

CPU Utilization

per-cpu: mpstat -P ALL 1, “%idle”; sar -P ALL, 
“%idle”; system-wide: vmstat 1, “id”; sar -u, “%idle”; 
dstat -c, “idl”; per-process:top, “%CPU”; htop, “CPU
%”; ps -o pcpu; pidstat 1, “%CPU”; per-kernel-
thread: top/htop (“K” to toggle), where VIRT == 0 
(heuristic). [1]

CPU Saturation

system-wide: vmstat 1, “r” > CPU count [2]; sar -q, 
“runq-sz” > CPU count; dstat -p, “run” > CPU count; 
per-process: /proc/PID/schedstat 2nd field 
(sched_info.run_delay); perf sched latency (shows 
“Average” and “Maximum” delay per-schedule); dynamic 
tracing, eg, SystemTap schedtimes.stp “queued(us)” [3]

CPU Errors
perf (LPE) if processor specific error events (CPC) are 
available; eg, AMD64′s “04Ah Single-bit ECC Errors 
Recorded by Scrubber” [4]

http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist

... etc for all combinations (would fill a dozen slides)

Sunday, February 24, 13

http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/


USE Method, cont.

• Some software resources can also be studied:

• Mutex Locks

• Thread Pools

• Process/Thread Capacity

• File Descriptor Capacity

• Consider possible USE metrics for each

Sunday, February 24, 13



USE Method, cont.

• This process may reveal missing metrics – those not provided 
by your current toolset

• They are your known unknowns

• Much better than unknown unknowns

• More tools can be installed and developed to help

• So many top(1)s, but where is the interconnect-top?

• Full USE Method checklist may, practically, only be used for 
critical issues

Sunday, February 24, 13



USE Method, cont.

• Resource-based approach

• Quick system health check, early in an investigation

• Pros:

• Complete: all resource bottlenecks and errors

• Not limited in scope by your current toolset

• No unknown unknowns – at least known unknowns

• Efficient: picks three metrics for each resource –
from what may be dozens available

• Cons:

• Limited to a class of issues

Sunday, February 24, 13



Other Methodologies

• Include:

• Blame-Someone-Else Anti-Method

• Tools Method

• Ad-Hoc Checklist Method

• Problem Statement Method

• Scientific Method

• Latency Analysis

• Stack Profile Method

• http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-performance-analysis-methodology/

Sunday, February 24, 13

http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-performance-analysis-methodology/
http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-performance-analysis-methodology/


Challenges

• Performance counter analysis (eg, bus or interconnect port 
analysis) is time consuming – would like tools for convenience

• How about a “bustop” subcommand for perf?

• DTrace for Linux ports still in progress – will be awesome 
when complete

Sunday, February 24, 13



Cloud Computing

• Performance may be limited by cloud resource controls, rather 
than physical limits

• Hardware Virtualization complicates things – as a guest you 
can’t analyze down to metal directly

• Hopefully the cloud provider provides an API for accessing 
physical statistics, or does the analysis on your behalf

• We do analysis at Joyent (and our hypervisors have DTrace!)

• Free trial for new customers: good for $125 of usage value (~ 
one Small 1GB SmartMachine for 60 days). All prices subject 
to change. Limited time only. Sign up at joyent.com

Sunday, February 24, 13

http://joyent.com/
http://joyent.com/


References

• Linux man pages, source, /Documentation

• USE Method: http://queue.acm.org/detail.cfm?id=2413037

• http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-
linux-performance-checklist/

• http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-
performance-analysis-methodology/

• https://github.com/dtrace4linux, http://www.dtracebook.com, 
http://illumos.org, http://smartos.org

• Upcoming: “Systems Performance” (Prentice Hall)

Sunday, February 24, 13

http://queue.acm.org/detail.cfm?id=2413037
http://queue.acm.org/detail.cfm?id=2413037
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-performance-analysis-methodology/
http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-performance-analysis-methodology/
http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-performance-analysis-methodology/
http://dtrace.org/blogs/brendan/2012/12/13/usenix-lisa-2012-performance-analysis-methodology/
https://github.com/dtrace4linux/linux
https://github.com/dtrace4linux/linux
http://www.dtracebook.com
http://www.dtracebook.com
http://illumos.org
http://illumos.org
http://smartos.org
http://smartos.org


Thank you!

• email: brendan@joyent.com

• twitter: @brendangregg

• blog: http://dtrace.org/blogs/brendan

• blog resources:
• http://dtrace.org/blogs/brendan/tag/linux-2/

• http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/

• http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-
checklist/

• http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/

• http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-
graphs/

• http://dtrace.org/blogs/brendan/2011/10/15/using-systemtap/

Sunday, February 24, 13

mailto:brendan@joyent.com
mailto:brendan@joyent.com
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan/tag/linux-2/
http://dtrace.org/blogs/brendan/tag/linux-2/
http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/
http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist/
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/
http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/
http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/
http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/
http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/

